Associative Decorrelation Dynamics: A Theory of Self-Organization and Optimization in Feedback Networks
نویسنده
چکیده
This paper outlines a dynamic theory of development and adaptation in neural networks with feedback connections. Given input ensemble, the connections change in strength according to an associative learning rule and approach a stable state where the neuronal outputs are decorrelated. We apply this theory to primary visual cortex and examine the implications of the dynamical decorrelation of the activities of orientation selective cells by the intracortical connections. The theory gives a uni ed and quantitative explanation of the psychophysical experiments on orientation contrast and orientation adaptation. Using only one parameter, we achieve good agreements between the theoretical predictions and the experimental data.
منابع مشابه
Associative Decorrelation Dynamics in Visual Cortex
This paper outlines a dynamic theory of development and adaptation in neural networks with feedback connections. Given input ensemble, the connections change in strength according to an associative learning rule and approach a stable state where the neuronal outputs are decorrelated. We apply this theory to primary visual cortex and examine the implications of the dynamical decorrelation of the...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملAutonomous Dynamics in Neural networks: The dHAN Concept and Associative Thought Processes
The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activi...
متن کاملGlobal Adaptation in Networks of Selfish Components: Emergent Associative Memory at the System Scale
In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrast...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994